Trials and tribulations - economic evaluation, study design and statistics

Prepared for Global Statistics Team

# Contained in this presentation

- What is a health economist and who are our target audience
- What to collect from trials, utilities, costs, cross-overs, duration
- Level of complexity- getting it right
- Staying ahead of the game



# What is a Health Economist?

- Like Frankenstein's monster, only nicer
- Parts of everything
  - Economics
  - Clinical study design
  - Medical sciences
  - Biostatistics
  - Psychology
  - Business analyst



## Who are our target Audience?

#### National reimbursement Committees

- Clinical dominates
- Health economics needs to be correct but understandable
- Pharmacy budget holders
- Insurers
- Clinicians
- Internal customers i.e. brand managers

Andrew Wilson PBAC

David Haslam

# Who are our target Audience - international?

#### Each country has a subtly different approach

- Sophisticated HTA environment
  - Differences within these i.e.
    Individual Patient Data vs Individual
    Patient Data
  - Trialists versus modellers
    - Trialists believe the RCT is gold standard and mistrust or suspicious of models
    - Modellers focus on models and their ability to capture

relevant data and uncertainty. RCT less important

#### Developing HTA environments

- Asia want "local data"
- May not have evaluation capacity

One size doesn't necessary fit all. Do we ever need two models?

### Designing a clinical study with cost effectiveness in mind - registration versus reimbursement

| lssue                                            | Answer                                                                        | i.e.                                            |
|--------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------|
| Comparator/s                                     | multiple for reimbursement; fewer registration and even placebo               | Alimta NSCLC                                    |
| Primary endpoints                                | Ask the FDA, EMEA                                                             | Peak VO2 versus NYHA classification in CHF      |
| Statistical power<br>and multiple<br>comparisons | to show a difference in the registration<br>endpoint - not economic endpoints | Hospital admissions                             |
| Countries in the study                           | need for trial participants vs where can<br>we get important economic data    | Scandinavia; UK;<br>Australia; Mexico;<br>Korea |

## Designing a clinical study with cost effectiveness in mind - Deciding what to collect - Utilities

- Utilities? i.e. EQ-5D, AQoL, HUI, SF-36
  - Payers want these from within studies
    - What if trial isn't powered to show a difference?
    - What if the condition isn't sensitive to instruments?
    - How do you interpret these results?
  - Some countries want localised utilities
    - Can apply local country scoring algorithm to the study results
    - Can use the countries own results although as this is a retrospective sub-group analysis may not be valid

#### EQ-5D |3 Mobility I have no problems in walking about I have some problems in walking about I am confined to bed Self-Care I have no problems with self-care I have some problems washing or dressing myself п I am unable to wash or dress myself Usual Activities (e.g. work, study, housework, family or leisure activities) I have no problems with performing my usual activities I have some problems with performing my usual activities I am unable to perform my usual activities Pain/Discomfort I have no pain or discomfort I have moderate pain or discomfort I have extreme pain or discomfort Anxiety/Depression I am not anxious or depressed I am moderately anxious or depressed I am extremely anxious or depressed

#### EQ-5D L3

By placing a tick in one box in each group below, please indicate which statements best describe your own health state today.

#### Designing a clinical study with cost effectiveness in mind - Deciding what to collect - Cost

- Cost data effect of cost outliers
  - High cost outliers can randomly occur on one arm of the study
  - Need to decide a priori how to deal with this

#### Example: HIV study

- Control arm cost range \$1,000 to \$10,000 per patient
- Intervention arm cost range \$1,000 to \$10,000 per patient However one patient \$200,000
- Makes costs higher on the Intervention arm



#### Designing a clinical study with cost effectiveness in mind - - cross over and treatment

Cross overs and their clinical treatment

Example: Oncology

- > If collect survival and progression free survival to end of follow up also collect all relevant costs
- ▶ In example collecting cross overs reducing additional incremental costs from \$17,000 to \$13,500 per patient
- > Appropriate statistical treatment of cross-overs is also important

#### Impact of cross over treatment

|                                     | New therapy | Old therapy | Incremental cost |
|-------------------------------------|-------------|-------------|------------------|
| Cost of chemotherapy                | \$20,000    | \$3,000     | \$17,000         |
| Percent cross over at failure       | 20%         | 20%         | \$0              |
| Cost per patient without cross over | \$20,000    | \$3,000     | \$17,000         |
| Cost per patient with cross over    | \$20,600    | \$7,000     | \$13,600         |

### Designing a clinical study with cost effectiveness in mind - Deciding what to collect - Duration

Long enough to capture important outcomes



What will be the difference in survival after the trial? convergence, extrapolation, speculation

## International differences

Separate for each country

Useful for localising global models

| Variable                           | Approach                                                |
|------------------------------------|---------------------------------------------------------|
| Utilities                          | Local from trial or separate study - preference weights |
| Body weight                        | Local - weight                                          |
| AEs and their pattern of treatment | Local - and can vary from country to country            |
| Other health care resources        | Local - From within trial                               |
|                                    |                                                         |

# Trial outputs model inputs

- Exact dosing per patient to cost out doses
- Adverse effects to cost out adverse effects
- Cross overs and the treatment they received
- Utilities
- Survival if its an issue
- Sub-groups dosing Tulicity Korea going with 0.75mg does only and ignoring 1.5mg
- Meta-analysis
- Indirect analysis
  - Bucher vs network analysis
  - To match other study populations or outcomes i.e. PANNS responders vs mean change





## Different types of economic evaluation

|                             | Costs                                    | Outcomes                   | Expressed as example                                               |
|-----------------------------|------------------------------------------|----------------------------|--------------------------------------------------------------------|
| Cost analysis               | \$ Health care                           | None                       | New treatment cost saving                                          |
| Cost minimisation analysis  | \$ Health care                           | Natural units and equal    | New treatment cost equal or saving and outcomes equal              |
| Cost effectiveness analysis | \$ Health care                           | Natural units and superior | Cost per life year saved<br>Cost per additional Objective Response |
| Cost utility analysis       | \$ Health care                           | Utilities/QALYs            | Cost per QALY                                                      |
| Cost benefit analysis       | \$ Health care plus<br>indirect at times | \$ Costs                   | Benefits exceed cost by X                                          |

## Different types of models





# Economic sub-studies/phase IV studies when data are not collected in the RCT

#### Can collect utility values and costs

- Health states and costs outside of the trial outcomes i.e. longer term outcomes
- Low incident health outcomes and costs i.e. adverse events
- In countries which require local utility values and are not covered by the registration studies i.e. Korea
- Evidence on prevalence of the condition
- Natural progression of the disease/condition

### What are the limits of understanding of non statisticians primarily payers and company staff/consultants

| Some economists don't understand | Extremely complex modelling and complex<br>programming - cutting edge methods, flexibility<br>constrained |
|----------------------------------|-----------------------------------------------------------------------------------------------------------|
| Clinicians don't understand      | Very complex modelling - includes more than the key variables                                             |
| Everyone<br>understands          | Simple to intermediate complexity models - includes key variables; flexible                               |

## Programming complexity

#### Complex approach example

- Vial dosage (how much they are administered)
  - =IF(C11="","",IF(OFFSET(\$U\$9,0,MATCH(C11,\$X\$7:\$A P\$7,0)+2)=1,ROUNDUP(K11/I11,0)\*I11,IF(OFFSET(\$U \$9,0,MATCH(C11,\$X\$7:\$AP\$7,0)+2)>2,N11\*I11,IF(AN D(C10=C11,(OFFSET(\$U\$9,0,MATCH(C11,\$X\$7:\$AP\$7 ,0)+2)=2)),IF(L10>K10,0,ROUNDUP((K11-L10)/I11,0)\*I11),IF(ROUNDUP(K11/I11,0)\*H11<(ROUN DDOWN(K11/I11,0)\*H11)+ROUNDUP((ROUNDUP(K11-(ROUNDDOWN(K11/I11,0)\*I11),0)/I12),0)\*H12,ROUN DUP(K11/I11,0)\*I11,ROUNDDOWN(K11/I11,0)\*I11)))))

#### Body weight

- =IF(C11="","",(OFFSET(Resource!\$J\$17,MATCH('Drug wastage'!C11,Resource!\$M\$19:\$M\$37,0)+1,0)))
- Total mgs
  - ▶ =IF(F11="","",F11\*G11)
- Price
  - =IF(ISBLANK(DrugCosts!H13),"",DrugCosts!H13)

#### Simple approach example

- Vial dosage (how much they are administered)
- Body weight
- Total mgs

# Simulation of trial outcomes versus directly using trial outcomes

#### Multiple comparisons in one analysis

- Network analysis
- Simulate clinical outcomes

#### Pros

- Transitive
- Same outcomes and costs for the primary intervention

#### Cons

Model is different from trial

# Multiple comparisons in a series of bilateral comparisons

- Indirect analysis via common reference arm
- Trial based analysis

#### Pros

Model outcomes are the same as the trials

#### Cons

Not transitive

## Repeat variables multiple times

"Shadow variables adds unnecessarily Complexity"



## Complex versus simple models

#### Highly complex pros

- Can include more detail regarding CE of therapy
- 🕨 Can contain built in variable choices 🗸
- $\blacktriangleright$  No criticism that it is too simplistic  $\checkmark$
- Iustify consulting fee get moneys worth  $\checkmark$ 
  - Show skill and commitment  $\checkmark$

#### Highly complex cons

- Many of payers don't understand what they are seeing ×
- May be rejected as "black box" i.e. Core model in Australia ×
- Confusion in internal company communication ×
- Errors don't get picked up. ×
- Evaluation process difficult ×

# 10 Rules for modelling

"A model is a simplification of reality - we need to see the wood for the trees"

- 1. Once Inputs variables only once
- 2. Learn Continuous learning
- 3. Simple KISS (Keep it Simple Stupid)
- 4. Reference Reference all sources
- 5. Manual Provide a technical manual
- 6. Valid Model should be validated by the trial outcomes
- 7. Flexibility Flexibility for the user, not constrained flexibility
- 8. Time Running time should not be excessive
- 9. Size- Over 50mb becomes a problem
- 10. Cost effective results should be cost effective.



## Getting ahead of the game

| lssue                                            | Solution                                                 | i.e.                                           |
|--------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| Established<br>intermediate<br>outcome           | Which outcome, power<br>this, maybe secondary<br>outcome | NYHA responders                                |
| Duration                                         | As long as possible                                      | Survival                                       |
| Utilities                                        | Are they sensitive - go to sub-study                     | EQ-5D                                          |
| Collect all relevant<br>health care<br>resources | Split by country                                         | Hospital admission; cross over to chemotherapy |
| Comparators                                      | As many as practical then plan indirect analysis         |                                                |
| What data are required and what are the gaps     | Early model to determine data requirements and gaps      | Current vaccine modelling                      |



# Thank you

# Questions



